
File system virtual appliances: Portable file system implementations

Michael Abd-El-Malek1, Matthew Wachs1, James Cipar1, Karan Sanghi1

Gregory R. Ganger1, Garth A. Gibson1,2, Michael K. Reiter3
1Carnegie Mellon University , 2Panasas, Inc., 3University of North Carolina at Chapel Hill

CMU-PDL-09-102

May 2009

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

File system virtual appliances (FSVAs) address the portability headaches that plague file system (FS) developers. By
packaging their FS implementation in a VM, separate from the VM that runs user applications, they can avoid the
need to port the file system to each OS and OS version. A small FS-agnostic proxy, maintained by the core OS
developers, connects the FSVA to whatever OS the user chooses. This paper describes an FSVA design that maintains
FS semantics for unmodified FS implementations and provides desired OS and virtualization features, such as a
unified buffer cache and VM migration. Evaluation of prototype FSVA implementations in Linux and NetBSD, using
Xen as the VMM, demonstrates that the FSVA architecture is efficient, FS-agnostic, and able to insulate file system
implementations from OS differences that would otherwise require explicit porting.

Acknowledgements: We thank the members and companies of the CyLab Corporate Partners and the PDL
Consortium (including APC, Data Domain, EMC, Facebook, Google, Hewlett-Packard Labs, Hitachi, IBM, Intel, LSI,
Microsoft Research, NetApp, Oracle, Seagate, Sun Microsystems, Symantec, and VMware) for their interest, insights,
feedback, and support. This material is based on research sponsored in part by the National Science Foundation, via
grants CNS-0326453 and CCF-0621499, by the Department of Energy, under Award Number DE-FC02-06ER25767,
and by the Army Research Office, under agreement number DAAD19–02–1–0389. Matthew Wachs was supported
in part by an NDSEG Fellowship, which is sponsored by the Department of Defense. We thank Intel and Network
Appliance for hardware donations that enabled this work.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
File system virtual appliances: Portable file system implementations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Parallel Data
Laboratory,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Portable file systems, third-party file system development, operating systems, virtual machines

1

1 Introduction

Building and maintaining file systems (FSs) is painful. OS functionality is notoriously difficult to
develop and debug, and FSs are more so than most because of their size and interactions with other
OS components. In-kernel FSs must adhere to the OS’s virtual file system (VFS) interface [19],
but that is the easy part. FS implementations also depend on memory allocation, threading,
locking/preemption, networking (for distributed FSs), and device access (for local FSs) interfaces
and semantics. To support memory mapped file I/O and a unified buffer cache, FSs are also closely
coupled to the virtual memory subsystem.

Though difficult during initial FS development, these “extra” dependencies particularly com-
plicate porting a file system to different OSs or even OS versions. While VFS interfaces vary a bit
across OSs, the other OS internal interfaces vary greatly, making porting and support of file systems
painful and effort-intensive. Need for portability comes in three forms: (1) an FS developed for one
OS requires explicit porting to function in another; (2) an FS developed for one OS version requires
modifications to function in each subsequent version of that OS, which is particularly burdensome
for third-party FS developers; (3) an FS developed for the latest OS version must be backported,
to support users of a previous OS version who cannot upgrade to the latest version.

In practice, these portability issues require substantial developer effort—approximately 50%
of the effort, in the estimate of some developers (see §2.1). Most researchers sidestep these issues
by prototyping in just one OS (version). Many also avoid kernel programming by using user-level
FS implementations, via a mechanism like FUSE (e.g., [3, 39, 12]) or NFS-over-loopback (e.g., [4]),
and some argue that such an approach sidesteps version compatibility issues. In reality, it does
not, for both practical and fundamental reasons. For example, there are many existing in-kernel
FS implementations that would require a user-level re-implementation. User-level approaches also
do not insulate an FS from OS-specific kernel-level issues (e.g., handling of memory pressure) or
from user-level differences among OSs (e.g., shared library availability and file locations). So, FS
developers address the problem with brute force where they can, and simply forgo OSs that pose
too large a hurdle.

This paper offers a new approach (Figure 1) for portable FS implementations, leveraging
virtual machines (VMs) to decouple the OS in which the FS runs from the OS used by the user’s
applications. The FS is distributed as a file system virtual appliance (FSVA), a pre-packaged virtual
appliance [30] loaded with the FS. The FSVA runs the FS developers’ preferred OS (version), with
which they have performed extensive testing and tuning. The user(s) run their applications in a
separate VM, using their preferred OS (version). Since it runs in a distinct VM, the FS can be
used by users who choose OSs to which it is never ported. The FSVA approach handles all three
forms of the FS portability problem.

Crucially, the FSVA approach relies on the interface to FSs being relatively simple and consis-
tent across OSs, with a small-ish number of VFS primitives. In contrast, the interfaces from FSs
to other OS componenets are much more complex and varying, especially when trying to maximize
FS performance. The VFS-like FSVA interface allows a FS in an FSVA to be accessed via an
FS-agnostic proxy in the user’s VM, isolated from the user OS’s internal interfaces.

For the FSVA approach to work, the FS-agnostic proxy must be a “native” part of the OS—it
must be maintained across versions by the OS implementers. The hope is that, because of its small
size and value to a broad range of FS users and implementers, the OS implementers would be
willing to adopt such a proxy. FUSE, a kernel proxy for user-level FS implementations, has been
integrated into Linux, NetBSD, and OpenSolaris, and we envision a similar adoption path for the
FSVA proxy.

This paper details the design, implementation, and evaluation of FSVA support in Linux and

1

User VM

Applications

Linux 2.6.28

Fe
do

ra
 9

FSVA

LFS cleaner

N
et

BS
D

LFS

Hypervisor

NetBSD 5.99.5

Figure 1. A file system runs in a separate VM. A user continues to run their preferred OS.
By decoupling the user and FS OSs, one allows users to use any OS without needing a corre-
sponding FS port. As an example, Linux does not include a log-structured file system (LFS)
implementation. But, using FSVAs, a Linux user can utilize NetBSD’s LFS implementation.
This illustrated example is used as a case study in §5.2.

NetBSD, using Xen as the VM platform. The Xen communication primitives allow for reasonable
performance—for a variety of macrobenchmarks and FSs, the slowdown is less than 10% compared
to native in-kernel FSs. Careful design is needed, however, to ensure FS semantics, maintain
OS features like a unified buffer cache, minimize OS changes in support of the proxy, and retain
virtualization features such as isolation, resource accounting, and migration. Our prototype realizes
all of these design goals.

We demonstrate the efficacy of the FSVA architecture in addressing the FS portability problem
with a number of case studies. Six FSs (ext2, ext3, ext4, LFS, NFS, and ReiserFS) are transparently
provided, via an FSVA, to applications running on a different VM, which can be running a different
OS or different OS version. For example, a Linux user can utilize the NetBSD log-structured
FS [29] implementation, immediately filling the void of LFS implementations for Linux. As another
example, a Linux 2.6.18 user can immediately use the new ext4 FS, which was recently merged
into the Linux 2.6.28 kernel but is not available in 2.6.18. No changes are required to the FS
implementations in the FSVA to enable such portability.

2 Porting FS implementations

FS implementations are tightly intertwined with OS internals. Of course, the OS calls into the FS
to access its functions. The VFS interface [19] in most OSs allows multiple FSs to co-exist in an
OS, while presenting a unified interface and sharing common caches. The VFS approach was also
intended to ease portability of FSs across OSs [19, 39], but it falls far short of its goal. The problem
is that the majority of portability problems relate to FS-OS interdependencies other than the basic
FS interface. Specifically, to implement its functionality, the FS must rely on and conform to many
internal OS interfaces and semantics, including memory allocation, threading, locking/preemption,
and the virtual memory subsystem. These aspects vary widely across OSs, and they often vary
even across versions of the same OS. Adapting to such variation is the primary challenge in porting
FS implementations.

This section describes portability challenges in more detail, the shortcomings of existing ap-
proaches, and the FSVA approach to addressing FS portability.

2

2.1 Porting experiences from the field

To better understand FS portability, we interviewed developers of four third-party FSs: GPFS [31],
OpenAFS (an open-source implementation of AFS [17]), Panasas DirectFLOW [41], and PVFS [5].
All four FSs have been widely deployed for many years. Since the inter-OS FS porting problem is
well-known and PVFS and Panasas DirectFLOW are only available in Linux, we describe the four
FS developers’ first-hand experiences with intra-OS FS porting: maintaining Linux client-side FS
code. Naturally, inter-OS portability faces all of these issues and more.
Interface syntax changes. The first changes that an FS developer encounters in an OS update
are interface syntax changes, due to compilation errors. The following is a representative list. Many
examples were conveyed to us by the developers, and we gleaned others from looking at OpenAFS
and PVFSs’ source control management systems’ logs. Some examples, with the corresponding
Linux kernel version in parentheses, include:
Callbacks: the vector I/O readv, writev VFS callbacks were replaced with the asynchronous I/O
aio read, aio write callbacks (2.6.19). sendfile was replaced by splice (2.6.23).
Virtual memory: the virtual memory page fault handlers, overridable by an FS, changed interfaces
(2.6.23).
Caching: the kernel cache structure constructors’ and destructors’ parameters changed (2.6.20).
Structures: the per-inode blksize field was removed (2.6.19). The process task structure no longer
contains the thread pointer (2.6.22).

While some of these changes may seem trivial, they are time-consuming and riddle source code
with version-specific #ifdefs that complicate code understanding and maintenance. Furthermore,
every third-party FS team must deal with each problem as it occurs. Examination of the open-
source OpenAFS and PVFS change logs shows that both FSs contain fixes for these (and many
similar) issues. We also encountered these issues while porting our proxy, though as we will discuss,
the proxy is much simpler than an entire third-party FS. Moreover, in our envisioned deployment
path, proxy ports would be done once by the OS implementers, rather than by every FS team.
Policy and semantic changes. Even if interfaces remain constant across OS releases, implemen-
tation differences can have subtle effects that are hard to debug. The following examples illustrate
this:
Memory Pressure: some RedHat Enterprise Linux 3 kernels are not robust in low memory situa-
tions. In particular, the kernels can block during allocation despite the allocation flags specifying
no blocking. This resulted in minutes-long delays in dirty data writeback under low-memory situ-
ations. RedHat acknowledged the semantic mismatch but did not fix the issue [28]. An FS vendor
was forced to work around the bug by carefully controlling the number of dirty pages (via per-
kernel-version parameters) and I/O sizes to the data server (thereby negatively impacting server
scalability).
Write-back: Linux uses a write-back control data structure (WBCDS) to identify dirty pages that
should be synced to stable storage. An FS fills out this data structure and passes it to the generic
Linux VFS code. Linux 2.6.18 changed the handling of a sparsely-initialized WBCDS, such that
only a single page of a specified page range was actually synced. This caused an FS to mistakenly
assume that all pages had been synced, resulting in data corruption.
Stack Size: RedHat distributions often use a smaller kernel stack size (4 K instead of the default
8 K). To avoid stack overflow, once this was discovered, an FS implementation used continuations
to pass request state across server threads. Continuations have been cumbersome for the devel-
opers and complicate debugging. This illustrates how one supported platform’s idiosyncrasies can
complicate the entire FS, not just the OS-specific section.

3

Locking: existing inode attribute fields required the inode lock to be held during access, whereas
previously no locking was required.
Radix Tree: the kernel provides a radix tree library. The 2.6.20 Linux kernel required the least
significant bit of stored values be 0, breaking an FS that was storing arbitrary integers.
Because the above changes were not documented, each third-party FS team had to discover them
by code analysis and kernel debugging, and then work around them.
Overall statistics. To appreciate the magnitude of the problem, consider the following statistics.
Panasas’ Linux portability layer supports over 300 configurations. PVFS developers estimate that
50% of their maintenance effort is spent dealing with Linux kernel issues. The most frequently
revised file in the OpenAFS client source code is the Linux VFS-interfacing file. An OpenAFS
developer estimates that 40% of Linux kernel updates necessitate an updated OpenAFS release.

One may be tempted to brush off the above difficulties as artificial and related only to Linux.
But, while most pronounced for Linux, with its independent and decentralized development pro-
cess, this problem poses challenges for FS vendors targeting any OS. Furthermore, given Linux’s
popularity in the server marketplace, this is a real problem faced by third-party FS developers, as
the statistics above demonstrate—simply dismissing it is inappropriate. Finally, these same port-
ing issues are experienced across OSs as well, and a solution that addresses the full FS portability
problem would be attractive.

2.2 Existing approaches and shortcomings

User-level file systems. Most OS vendors maintain binary compatibility for user-level applica-
tions across OS releases. As a result, user-level FSs have been proposed as a vehicle for portable
FS implementations [3, 22, 39]. This is done either through a small kernel module that reflects FS
calls into user-space [3, 39, 12] or through a loopback NFS server that leverages existing kernel
NFS client support [4].

User-level FSs are not sufficient, for several reasons. First, a user-level FS solution would
provide no help for existing kernel-level FS implementations. Second, user-level FSs still depend
on the kernel to provide low-level services such as device access, networking, and memory manage-
ment. Changes to the behavior of these components will still affect a user-level FS. For instance,
§2.1’s Memory Pressure example would not be solved by user-level FSs. Third, user-level FSs can
deadlock since most OSs were not designed to robustly support a user-level FS under low-memory
situations [22]. Such deadlocks can be avoided by using a purely event-driven structure, as the SFS
toolkit [22] does, but at the cost of restricting implementer flexibility. Fourth, when using inter-
faces not explicitly designed for user-level FSs, such as NFS loopback, user-level FS semantics are
limited by the information (e.g., no close calls) and control (e.g., NFS’s weak cache consistency)
available to them. Fifth, user-level FSs provide no assistance with user-space differences, such as
shared library availability and OS configuration file formats and locations.
Language-based approaches. FiST [42] provides an alternative to portable FS implementation,
via a specialized language for FS developers. The FiST compiler generates OS-specific kernel
modules. Given detailed information about all relevant in-kernel interfaces, updated for each OS
version, FiST could address inter-version syntax changes. But, FiST was not designed to offer
assistance with policy and semantic changes. Also, a specialized language is unlikely to be adopted
unless it is expressive enough to address all desirable control, which is far from a solved problem.

Coccinelle [24] is a program transformation tool that automatically updates Linux device
drivers after API changes. While Coccinelle could handle some of the interface syntax changes that
we described, like FiST, it would be unable to mitigate the policy and semantic problems. The

4

User VM FSVA

Hypervisor

FS applications

FSVA proxy

File systemUser OS proxy

VFS

Applications
FS sys calls

VFS calls VFS callsFSVA IPCs

Figure 2. FSVA architecture. An FS and its (optional) management applications run in a
dedicated VM. An FS-agnostic proxy running in the client OS and FSVA pass VFS calls via
an efficient IPC transport.

latter are OS design artifacts that require much more intrusive FS changes.
Software engineering approaches. The software engineering community has studied the general
problem of variability management. Software product lines (SPL) [7] is a technique that advocates
a disciplined approach to finding and reusing common functionality (and interfaces) among related
products. In a single vendor environment, or when multiple vendors agree on a common interface,
SPL can be effective.

Unfortunately, different OS vendors (and even different releases of the same OS) have failed to
agree on a common, comprehensive VFS interface. Different design choices, backward compatibility,
and tight coupling to other (changing) OS components (e.g., the virtual memory subsystem) mean
that the differences in OSs’ VFS interfaces and syntax are here to stay. Overcoming policy and
semantic differences is even more challenging. Some differences (e.g., §2.1’s Stack Size example)
arise from entirely non-FS-related OS design choices.

2.3 FSVAs = VM-level FSs

The FSVA approach promoted here is similar in spirit to user-level FSs. As before, a small FS-
agnostic proxy is maintained in the kernel. But, instead of a user-level process, the proxy allows
the FS to be implemented in a dedicated VM. This approach leverages virtualization to address
the compatibility challenges discussed above. In contrast to user-level FSs, FSVAs support legacy
FS implementations and permit an FS to use OS-specific functionality (e.g., RDMA) while still
supporting multiple OSs. Furthermore, FSVAs fully isolate the FS from user OSs and thus overcome
the policy and semantic challenges described in §2.1.

Figure 2 illustrates the FSVA architecture. 1 User applications run in a user’s preferred OS.2

An FS implementation executes in a VM running the FS vendor’s preferred OS. In the user OS,
an FS-independent proxy registers as an FS with the VFS layer. The user OS proxy sends all VFS
calls to a proxy in the FSVA that sends the VFS calls to the actual FS implementation. The two
proxies translate to/from a common VFS interface and cooperate to maintain OS and VM features
such as a unified buffer cache (§3.2) and migration (§3.3).

Using an FSVA, an FS developer can tune and debug her implementation to a single OS version
without concern for the user’s particular OS (version). The FS will be insulated from both in-kernel

1The figure shows “native” virtualization, in that OSs execute in VMs atop a hypervisor. FSVAs can also be used
with “hosted” virtualization, where the FSVA runs in a VM hosted by the user OS.

2The FS in an FSVA may be the client component of a distributed FS. To avoid client/server ambiguities, we use
“user” and “FSVA” to refer to the FS user and VM executing the FS, respectively.

5

and user-space differences in user OSs, because it interacts with just the one FSVA OS version.
Even issues like the poor handling of memory pressure and write-back can be addressed by simply
not using such a kernel in the FSVA—the FS implementer can choose an OS to suit the FS, rather
than being forced to work with a user’s chosen OS.

2.4 Viability

For the FSVA approach to succeed, the FSVA interface must be stable. Otherwise, FSVAs would
merely shift the location of the changing-interfaces problem. Towards that end, we designed a
minimal FSVA interface. Since the majority of interface and policy changes occur in internal OS
functionality (§2.1), not at the core VFS interface, we expect FSVA interface stability to be possible.
NFS provides a successful model of a constant FS interface that has enjoyed wide OS support —
though, as discussed in §2.2, it is inadequate for our purposes.

The user OS and FSVA proxies are dependent on the hypervisor interface. Consequently, a
proliferation of hypervisors could make it difficult for OS vendors to support the proxies for every
hypervisor. Fortunately, there are only a few widely-used hypervisors. Furthermore, the hypervisor-
specific code is a quarter of the user OS and FSVA proxies (about 2200 SLOC, as measured by
SLOCCount). Given the (necessarily) thin hypervisor interface, it is unlikely that the hypervisor-
interfacing RPC code will significantly change over time. Thus, we believe it is reasonable to expect
OS vendors to support common hypervisors.

FSVAs do not preclude an FS developer from porting the FS to a different OS (version).
Indeed, he/she might still do so to get new features, for improved performance, or for OS bug fixes.
But, FSVAs enable such porting to occur at the FS developer’s pace, not at the users’ pace. The
FS developer can skip porting to most OSs and select a new stable OS (version) when desired.

3 Design

This section describes an FSVA design intended to achieve the following goals:
No FS changes To simplify adoption and deployment, FS developers should not have to modify
their FS to run in an FSVA.
Generality The FSVA interface should be OS- and FS-agnostic. It should not make assumptions
about OS internals or FS behavior.
Maintain OS and VM features Support existing user OS features such as a unified buffer
cache, and memory mapping. Applications should not be aware of the FSVA separation. Ex-
isting virtualization features such as migration, checkpointing, performance isolation, and resource
accounting should not be adversely affected.
Minimal OS and VMM changes To encourage OS vendor adoption, the user OS and FSVA
proxies should require few changes to the OS. Similarly, any VMM changes should be minimal.
Efficiency FSVAs should impose minimal overheads.

Together, the above goals allows FS developers to use FSVAs, knowing that the OS-maintained
proxies will work for them, without being required to change their FS or the OS within which they
implement it. (They may choose to make changes, for efficiency, but can rely on unchanged FS
semantics.) These goals also serve to encourage adoption by users and OS and VMM vendors.

3.1 FSVA interface

Achieving our goals dictates characteristics of the interfaces between the proxies in the user OS
and FSVA. In particular, two major design decisions follow. First, to maintain FS semantics for

6

unmodified FSs, all VFS calls are passed from the user OS to the FSVA; no user OS caching is
performed (§3.1). Second, to maintain virtualization features in the presence of multiple user VMs,
each user VM is given its own FSVA; FSVAs are not shared among user VMs (§3.3).
VFS-like interface. Our goals dictate a VFS-like interface between the proxies: this is the most
direct interface to existing FSs. Most Unix OSs have similar VFS interfaces, both in the operation
types (e.g., open, create, write) and state (e.g., file descriptors, inodes and directory entries).
Consequently, the VFS interfaces in the two OSs will be similar and differences can be normalized
by the proxies. In addition to VFS operations, the inter-proxy interface includes calls to support a
unified buffer cache and migration. Table 1 lists the FSVA interface.

What has been left out of the FSVA interface is notable: virtual memory interactions, data and
metadata caching, device access, memory allocation, locking, preemption policy, and threading. It
is precisely these aspects that change most across OSs (versions) and cause the most grief for FS
developers. The spartan FSVA interface ensures that it can remain constant among OSs and across
OS revisions. The limited FSVA interface does not constrain the functionality of the user OSs or
the FS. OS developers are free to change internal OS interfaces and implementation, as long as
they maintain the proxies.
Passing all VFS calls. Our goal of a generic architecture that maintains FS semantics for
unmodified FSs precludes any user OS caching. Although avoiding calls into the FSVA (e.g.,
read hits and write-backs) would improve performance, embedding such functionality in the user
OS proxy decreases generality and couples the FSVA and user OSs. For example, many FSs
carefully manage write-back policies to improve performance and achieve correctness—if the user
OS performed write-back caching without giving control to the FSVA, it would lose this control
and face issues such as the memory pressure and write-back issues described in §2.1. Such user OS
proxy write-back would also break consistency protocols, like NFS, that require write-through for
consistency or reliability. Similar problems arise for read caching in the user OS proxy: callback
schemes would be needed for consistency, unless shared memory were used; but a shared memory
metadata cache would force the two OSs to use a common format for their cached metadata,
requiring intrusive OS changes. Virtualization-optimized FSs, like POFS [26] and XenFS [21],
accept some of these consequences for improved performance. FSVAs, however, have a different
goal: maintain FS semantics without FS changes.

3.2 Maintaining OS features

Metadata duplication. Many OS components expect in-memory file metadata such as inodes or
directory entries (e.g., for open files or executing programs). Therefore, the user OS proxy creates
those data structures in the user OS. The FSVA will also contain metadata, to support the FS
and FSVA OS operations. Thus, metadata exists in both OSs. Note that the user OS metadata is
minimal: the user OS proxy creates basic inodes and directory entries, but any FS-specific “extra”
metadata (e.g., block allocation maps) is stored only in the FSVA. This follows from the FS-agnostic
FSVA design — the proxies are not aware of FS-specific metadata.

Metadata duplication can be avoided through invasive OS changes to wrap metadata access.
But, practically, this would complicate the adoption of the user OS proxy by OS vendors. Given
that inodes and directory entries are small data structures, we opted for duplication. As we describe
below, data pages are not duplicated.

For distributed FSs with cache consistency callbacks, a user OS might contain stale metadata.
For example, an open file’s attributes may be updated in the FSVA through a cache consistency
callback. But, this inconsistency will not be visible to the user application. OSs already call into

7

the FS in response to application operations that require up-to-date metadata. This will cause the
user OS proxy to retrieve the updated metadata from the FSVA.
Unified buffer cache. Early Unix OSs had separate caches for virtual memory pages and file
system data. This had data and control disadvantages. First, disk blocks were sometimes duplicated
in both caches. Second, the lack of a single eviction policy led to suboptimal cache partitioning.
Unified buffer caches (UBCs) fix both problems [13, 32]. A single cache stores both virtual memory
pages and FS data, avoiding copies and enabling a single eviction policy.

An analogous problem exists for FSVAs: separate caching between the user OS and FSVA
OS. Without extensive OS changes, we cannot coalesce the two OSs’ caches into a single cache —
the OSs have different data structures and expect exclusive access to hardware (e.g., in order to
read and set page access bits). Instead, we maintain the illusion of a single cache by using shared
memory (to avoid data copies) and by coupling the two caches (to obtain a single eviction policy).
The user OS and FSVA proxies maintain this illusion transparently to the two OSs.

Providing a single eviction policy is complicated since each OS has its own memory allocation
needs and knowledge. On one hand, since applications execute in the user OS, the user OS allocates
virtual memory pages and is aware of their access frequency. On the other hand, since I/O is
performed in the FSVA (both in response to user requests and due to FS features such as read-
ahead and write-back), the FSVA allocates FS buffer pages and is aware of their access frequency.

The semantic gap between the two caches can be bridged by informing one of the OSs of the
other OS’s memory allocations and accesses. To cleanly support multiple FSVAs and to preserve
the user OS’s cache eviction semantics and performance, we chose to inform the user OS of the
FSVA’s memory allocations and accesses. Thus, the user OS controls the eviction policy.

The FSVA proxy registers callbacks with the FSVA buffer cache’s allocation and access rou-
tines. When the FSVA proxy observes that a new page is inserted into the buffer cache, it makes a
hypercall to grow the FSVA by a single page. On every response to the user OS, the FSVA proxy
piggybacks page allocation and access information. On receiving a page allocation message, the
user OS proxy returns a page to the hypervisor, thereby balancing the memory usage among the
OSs. Furthermore, the user OS proxy allocates a ghost page [9, 25] in its UBC. Conceptually, the
ghost page is an entry in the UBC’s LRU lists that lacks a physical backing page.

On receiving a page access message, the user OS proxy calls the OS’s “page accessed” function
to update the ghost page’s location in the OS’s LRU lists. Thus, the ghost page serves as a
placeholder in the user OS’s UBC for the FSVA’s buffer cache page. When the user OS later
decides to evict this ghost page, the user OS proxy grows by a page, informs the FSVA that it
should decrease its buffer cache by a corresponding page, and the FSVA returns a page to the
hypervisor. The net result is a coupling of the two OSs’ UBCs and a single inter-VM cache eviction
policy.

The inter-VM UBC serves to optimally size the two VMs’ memory sizes, based on the virtual
memory workload in the user OS and the buffer cache workload in the FSVA. Note that VM bal-
looning [36] and page deduplication [15, 36] are orthogonal to inter-VM UBC — these mechanisms
contain heuristics for deciding on an optimal VM size, while our inter-VM UBC algorithm uses the
user OS’s specific UBC cache eviction policy.

Our design choice of a single FSVA per user VM (§3.3) greatly simplifies the UBC design.
In a shared FSVA design, properly attributing page allocations and accesses to a specific user is
complicated by concurrent requests and latent FS work, such as write-back and read-ahead. The
FSVA OS and FS would require modifications to ensure proper attribution.

8

3.3 Maintaining VM features

One user OS per FSVA. A fundamental FSVA design decision is whether to share an FSVA
among multiple user VMs. In our initial design, the sharing benefits of a single FSVA serving
multiple user VMs favored a single FSVA approach. Common inter-VM FS metadata and data
would be “automatically” shared, the number of any cache consistency callbacks would be reduced
(e.g., for AFS), greater batching opportunities exist, and there exists potential for better CPU
cache locality. Indeed, POFS and XenFS use this single FS server approach [26, 21].

There is a well-known tension between sharing and isolation. A consequence is that the sharing
opportunities provided by a single-FSVA design do not come for free. A single FSVA complicates a
unified buffer cache (§3.2), resource accounting and isolation (§3.3), and user VM migration (§3.3).
In describing those topics, we discuss how a shared FSVA would complicate these features.
Resource accounting. Virtualization provides coarse-grained physical resource sharing among
users. This low-level sharing avoids the performance crosstalk that plagues OS-level resource mul-
tiplexing [2]. Coarse-grained physical resource sharing also simplifies per-VM resource accounting,
enabling flexible scheduling policies and accurate billing (e.g., in a shared data center).

When a user has one or more FSVAs, resource usage in the FSVAs should be charged to the
user VM. This allows an administrator to continue setting a single coarse-grained resource policy
for user VMs. Logically, the user VM and its FSVAs form a single unit for the purpose of resource
accounting.

Associating only a single user OS per FSVA simplifies resource accounting. If multiple users
share an FSVA, the hypervisor would not be able to map FSVA resource utilization to user VMs.
Instead, the FSVA would itself have to track per-user resource usage and inform the hypervisor.
For shared block or network driver VMs [11], tracking per-user resource usage is viable, owing
to the small number of requests types and their fairly regular costs [14]. But, FSVAs provide a
much richer interface to users: there are many VFS operation types and an operation can have
significantly varying performance costs (e.g., reads that hit or miss in cache). Latent OS work (e.g.,
cache pressure causing a previously written dirty page to be sent to the server) further complicates
OS-level resource accounting. Also, any DoS-like activity (e.g., opening a large number of files) only
harms the one user OS. Thus, our design of one user OS per FSVA simplifies resource accounting
by leveraging the hypervisor’s existing coarse accounting mechanisms.
Migration. One feature of virtualization is the ability to migrate VMs without OS or applica-
tion support. In addition, live migration minimizes VM downtime, reducing interference to user
applications [6]. If a VM relies on another VM for a driver [11], the VM’s driver connection is
reestablished to a driver VM in the new physical host. This is relatively simple since driver VMs
are (mostly) stateless and provide idempotent operations.

FSVAs complicate migration. In contrast to driver VMs, FSVAs can contain large state on
behalf of a user VM and the FSVA interface is non-idempotent. To allow unmodified FSs running
in an FSVA to support migration, we migrate an FSVA along with its user VM. This approach
leverages VM migration’s existing ability to transparently move VMs. Since some FS operations
are non-idempotent, care must be taken to preserve exactly-once semantics. Another complication
is that shared memory pages (e.g., for the request/response ring and memory-mapped I/O) will
likely have different physical page mappings after migration. To address these two issues, the
user OS and FSVA proxies transparently restore the shared memory mappings and retransmit
any pending requests and responses that were lost during the IPC layer teardown. Moreover,
we retain live migration’s low downtime by synchronizing the two VMs’ background transfer and
suspend/resume.

9

Having only a single user OS per FSVA simplifies migration. In contrast, a shared FSVA would
require FS involvement in migrating private state belonging to the specific user OS being migrated.
Additionally, for distributed FSs with stateful servers, the server would need to support a client
changing its network address. This would likely require server modifications. By migrating the
unshared FSVA, our approach leverages the existing migration feature of retaining IPs, thereby
requiring no server changes.

3.4 Miscellaneous

Virtualization requirements. The above design requires two basic capabilities from a hyper-
visor: inter-VM shared memory and event notification. Popular hypervisors provide these [2, 34].
The use of paravirtualization [2], software virtualization [35], or hardware-assisted virtualization
does not affect the above design.
Security. Maintaining the user OS’s security checks and policies is required in order to maintain
the same applications semantics. Unix OSs perform access control in the VFS layer. Since the
user OS proxy sits below the VFS layer, the existing VFS security checks continue to work. In
the FSVA, the proxy calls directly into the FS, thereby bypassing the FSVA OS’s security checks.
In contrast to generic OS security checks, FS-specific security features may require extra effort, as
discussed in §3.5.

3.5 Limitations

Out-of-VFS-band state. The FSVA design fails to capture out-of-VFS-band FS state. For
example, NFSv4 uses Kerberos authentication. With Kerberos, a user runs a program to obtain
credentials, which are stored in /tmp on a per-process-group basis. The NFSv4 VFS handlers
retrieve those Kerberos credentials. To preserve the applications’ authentication semantics, the use
of Kerberos authentication in NFSv4 requires the credentials to be copied from the user OS to the
FSVA. Since Kerberos is also used by other FSs, the user OS and FSVA proxies should probably be
Kerberos-aware. However, the general problem of out-of-VFS-band state requires FS cooperation.
Incompatible FS semantics. A semantic mismatch exists if the user and FSVA OSs have
incompatible VFS interfaces. For example, connecting a Unix FSVA to a Windows user OS brings
up issues with file naming, permission semantics [38], and directory notifications. So, we envision
a single FSVA interface for every “OS type.” This paper focuses on an FSVA interface for Unix
OSs, which tend to share similar VFS interfaces [19] and POSIX semantics. It may be possible to
create a superset interface to support both Windows and Unix users [10], but this is beyond our
scope.
Memory overhead. There is memory overhead for an FSVA, due to an extra OS and metadata
duplication. Since the FS vendor is likely to use only a small subset of the OS, and they distribute
a single FSVA, it is feasible for them to fine-tune the OS leading to a small OS image. Nevertheless,
the FSVA architecture may not be appropriate for environments with severe memory pressure. §5.5
quantifies this memory overhead.

4 Implementation

We used the Xen hypervisor [2] for our FSVA prototype. To demonstrate FS portability, we
implemented the user OS and FSVA proxies for two different Linux kernels: 2.6.18 (released in
September 2006) and 2.6.28 (released in December 2008). We also implemented the FSVA proxy

10

Type Operations

Mount mount, unmount

Metadata
getattr, setattr, create, lookup, mkdir, rmdir, link, unlink, readdir
truncate, rename, symlink, readlink, dirty inode, write inode

File ops open, release, seek

Data read, write, map page, unmap page

Misc. dentry validate, dentry release, flush, fsync, permission

UBC invalidate page, evict page

Migration restore grants

Table 1. The FSVA interface. Most of the calls correspond to VFS calls, with the exception
of three IPCs that support migration and a unified buffer cache.

for NetBSD 5.99.5 — but that port currently lacks UBC and migration support. We are also
currently working on a VMware port.

An FSVA runs as an unprivileged VM. We modified the Xen management console scripts to
support installing and removing connections between a user VM and an FSVA. When a connection is
initiated, the user OS and FSVA proxies set up a shared memory region (containing an asynchronous
I/O ring of requests and responses) and an event notification channel (for inter-VM signaling). This
IPC layer closely resembles Xen’s block and network drivers’ IPC layers. We use a similar structure
as Xen’s asynchronous I/O ring to eliminate locking between the OSs and to provide out-of-order
response flexibility to the FSVA [2].

Most of our code is implemented in user OS and FSVA kernel modules. But, we had to
make a number of small changes to Linux and Xen. First, to allow applications to memory map
FSVA pages, we modified the Linux page fault handler to call the user OS proxy when setting
and removing page table entries that point to an FSVA page. Xen requires a special hypercall
for setting user-space page table entries that point to another VM’s pages. Second, to support a
unified buffer cache, we added hooks to the kernel’s buffer cache allocation and “page accessed”
handlers. We also modified the writeback code as described in §4.2. Third, to support migration,
we modified the hypervisor to zero out page table entries that point to another VM at migration
time. In total, these three changes constituted less than 100 SLOC.

The Linux user OS and FSVA proxies contain ∼5300 and ∼3500 SLOC, respectively, as mea-
sured by SLOCCount. Of the sum, ∼2200 SLOC belong to the migration-supporting IPC layer,
and ∼700 SLOC belong to the UBC code. As a reference point, the Linux NFSv3 client code is
∼13,000 SLOC. The NetBSD FSVA proxy contains ∼2500 SLOC — recall it currently lacks UBC
and migration support.

4.1 Inter-proxy interface

The majority of VFS operations have a simple implementation structure. The user OS proxy’s
VFS handler finds a free slot on the IPC ring, encodes the operation and its arguments in a generic
format, and signals the FSVA of a pending request via an event notification. Upon receiving the
notification, the FSVA decodes the request and calls the FS’s VFS handler. Responses are handled
in a reverse fashion. To avoid deadlocks like those described in §2.1 and §2.2, the user OS proxy
does not perform any memory allocations in its IPC path.

Table 1 lists the interface between the user OS and FSVA proxies. Most of the IPCs correspond

11

to VFS calls such as mount, getattr, and read. As described below, there is also an IPC to support
migration and two IPCs to support a unified buffer cache.

There are two types of application I/O: ordinary read/write and memory mapped read/write.
For ordinary I/O, the application provides a user-space buffer. The user OS proxy creates a sequence
of grants for the application buffer — each grant covers one page — using Xen’s shared memory
facility. No hypercalls are involved in this operation. The grants are then passed in the I/O IPC.
The FSVA proxy maps the grants into the FSVA address space using Xen hypercalls, calls the FS
to perform I/O directly to/from the buffer, unmaps the grants using Xen hypercalls, and sends the
I/O response to the user. The user OS proxy then can recycle the grants. As an optimization, if
less than 4 KB of data is read or written, data is copied back and forth using trampoline buffers
— pages that are shared during bootstrap — as the cost of the shared memory hypercalls is not
amortized over the small access size (see 5.4).

Memory mapped I/O is handled in a similar fashion, except that the roles of grant issuer and
user are reversed. When an application memory access causes the OS page fault handler to read a
FS page, the user OS proxy performs a map page IPC to the FSVA. In response, the FSVA proxy
calls the FS to bring the relevant page into the buffer cache, pins the page, and returns a grant for
the page. The user OS proxy then maps that grant into its buffer cache. The grant is unmapped
once the user OS evicts the page.

To enable inter-operability between 32- and 64-bit OSs, we use compiler directives to ensure
32-bit IPC structure alignment. There is no need for XDR functions as the two VMs will have the
same endianness. Due to idiosyncrasies in 32-bit Linux high memory implementation and Xen’s
shared memory facility, we can only map pages between VMs that are in the low memory region.
This places a limit on the number of shared pages between VMs if one of them is 32-bit. We believe
Xen can be modified to remove this limitation, but we have not done so.

4.2 Unified buffer cache

To maintain a UBC, the user OS proxy must be notified of page allocations and accesses in the
FSVA. We added hooks to Linux to inform the FSVA of these events. When either event occurs,
the FSVA proxy queues a notification. A list of these notifications are piggybacked to the user OS
proxy on the next reply.

Linux allocates buffer cache pages in only one function, making it simple for us to capture
allocation events. For page access events, there are two ways in which a page is marked as accessed.
First, when an FS looks up a page in the page cache, the search function automatically marks the
page as accessed in a kernel metadata structure. We added a hook to this function. Second, the
memory controller sets the accessed bit for page table entries when their corresponding page is
accessed. However, since all FSVA accesses to FS pages are through the search functions, we ignore
this case. (Application access to memory mapped files will cause the user OS, not the FSVA, page
table entries to be updated.)

A subtle UBC side-effect is that decreasing the number of FSVA free pages affects the dirty page
writeback rate. To maintain the same writeback behavior, we have modified the FSVA function
that determines the writeback rate such that it uses the user OS’s number of free pages; this value
is piggybacked on every request.

While the majority of FSVA memory allocations occur in the buffer cache, metadata allocations
(e.g., for inodes and directory entries) must increase the FSVA memory. Otherwise, the FSVA will
evict buffer cache pages, decreasing performance. We continuously monitor the size of the Linux
“slab” — where metadata is allocated — and grow (shrink) the FSVA as the slab grows (shrinks).
The change in slab size is piggybacked on responses and the user OS changes its size accordingly.

12

4.3 Migration

There are three steps to migrating a user-FSVA VM pair. First, the two VMs’ memory images must
be simultaneously migrated, maintaining the low unavailability of Xen’s live migration. Second,
given how Xen migration works, the user-FSVA IPC connection and the shared memory mappings
must be reestablished. Third, in-flight requests and responses that were affected by the move must
be reexecuted.

We modified Xen’s migration facility to simultaneously copy two VMs’ memory images. To
maintain live migration’s low downtime, we synchronize the background transfer of the two images
and the suspend/resume events. Since the user VM depends on the FSVA, the user VM is suspended
first and restored second.

When a VM is resumed, its connections to other VMs are broken. Thus, the user OS and
FSVA proxies must reestablish their IPC connection and shared memory mappings. We use Xen’s
batched hypercall facility to speed up this process. A side-effect is that the FSVA proxy must
maintain a list of all shared pages to facilitate this reestablishment. The user OS proxy performs
a special restore grants IPC to retrieve this list from the FSVA.

When a user VM is resumed, its applications may attempt to access a memory mapped page
whose mapping has not yet been restored. This access would cause an application segmentation
fault. To avoid this, we modified the hypervisor migration code to zero out user VM page table
entries that point to another VM. So, application attempts to access the page will cause an ordinary
page fault into Linux, and the user OS proxy will block the application until the page’s mapping
is reestablished.

Because the user-FSVA IPC connection is broken during migration, in-flight requests and
responses must be resent. To enable retransmission, the user OS retains a copy of each request
until it receives a response. To ensure exactly-once IPC semantics, unique request IDs are used and
the FSVA maintains a response cache. Read operations are assumed to be idempotent and hence
the response cache is small. The FSVA garbage collects a response upon receiving a new request
in the request ring slot corresponding to that response’s original request.

4.4 Reducing communication overhead

Our design goal of supporting unmodified FSs does not come for free. It forces all VFS calls to be
sent to the FSVA, thereby increasing inter-VM IPC frequency. In turn, FSVA performance is highly
dependent on the IPC layer’s performance. This subsection discusses the overheads associated with
the traditional Xen IPC mechanism, and then describes our optimizations.

There are two components to IPC: data transfer and control transfer. Data transfer is fast
(less than 1µs) since requests and responses are small3 and are stored in a shared memory region.
Control transfer has two elements: VM-level scheduling and context switching, and signaling. If
the user VM and FSVA are concurrently executing on different cores, then there are no VM-level
scheduler and context switch latencies. But the two VMs must still signal each other of the pending
request or response.

The standard Xen mechanism for inter-VM signaling employs event channels [2]. Two VMs
create an event channel during IPC layer creation. Subsequently, they make hypercalls to send a
notification on an event channel. The Xen “send event” hypercall sends a software interrupt to the
destination VM. If the VM is not currently executing or has masked that interrupt, the interrupt

3Requests and responses are 512 bytes, including piggybacked UBC messages. Data operations (e.g., read and
readdir) use additional shared memory.

13

is marked in its pending interrupts mask. Otherwise, an inter-processor interrupt (IPI) is sent to
the CPU executing the other VM.

Upon receipt of an IPI, the CPU invokes the OS’s interrupt handler. This is effectively a thread
context switch, since the current processor state must be saved before executing the interrupt
handler thread. In Linux, the interrupt handler typically masks off other interrupts and cannot
sleep. Thus, the interrupt handler is not capable of executing general-purpose kernel code that
may block. The Xen event channel interrupt handler signals a worker thread, which then handles
the operation. This involves a second thread context switch. In a Linux 64-bit x86 environment, a
thread context switch costs ∼3.5µs. Thus, a one-way inter-VM signal costs 7µs in thread switch
times. There are also additional overheads in sending the IPI (∼2µs).

The Xen event channel mechanism was designed for I/O devices, in which a two-way IPC
signaling overhead of 18µs would be insignificant when compared to device access time. But this
overhead is too high for FSVAs, where many frequent VFS operations (e.g., getattr, permission)
execute in less than 1µs.

When multiple processors are available, a well-known technique for reducing IPC cost is to use
polling as a signaling mechanism. Using polling, our IPC can avoid the expensive thread context
switches. This decreases the null IPC latency from 21µs to 4µs. Unfortunately, polling is energy
inefficient during idle periods.

Fortunately, x86 processors include instructions that provide polling-like latency with events-
like energy-efficiency. These instructions were introduced to enable energy- and performance-
efficient inter-process synchronization. The monitor and mwait instructions put a processor in
low-energy mode until a write occurs to a specific memory address. These are privileged instruc-
tions, so we added a new Xen hypercall that wraps these instructions. The mwait-based IPC has
similar latency to the polling IPC, with a slight increase due to the hypercall cost.

5 Evaluation

This section evaluates our FSVA prototype. First, it describes examples of using FSVAs to address
FS portability. Second, it quantifies the performance and memory overheads of our FSVA prototype.
Third, it illustrates the efficacy of the inter-VM unified buffer cache and live migration support.

5.1 Experimental setup

Experiments are performed on a dual quad-core 1.86 GHz Xeon E5320 machine with 8 GB of mem-
ory, a 10K rpm 146 GB Seagate Cheetah ST3146755SS disk connected to a Fusion MPT SAS adap-
tor, and a 1 Gb/s Broadcom NetXtreme II BCM5708 Ethernet NIC. Our NFS server is a single
quad-core 1.86 GHz Xeon E5320 machine with 4 GB of memory, a 10K rpm 73 GB Seagate Chee-
tah ST373455SS disk using the same Fusion SAS adaptor and Broadcom NIC, running the Linux
in-kernel NFSv3 server implementation.

We used Xen version 3.4-unstable. Linux VMs run the 64-bit Debian testing distribution, with
either our modified 2.6.18 kernel (based on the Xen-maintained Linux kernel tree) or 2.6.28 kernel
(based on the vanilla Linux repository). We compiled the Linux kernels with gcc 4.3.3, without
debugging symbols or checks. NetBSD VMs run 64-bit NetBSD 5.99.5, compiled with gcc 4.1.3
with debugging symbols enabled.

By default, ext2 and ext3 randomly allocate block groups for top-level directories. This caused
significant variance in our results across runs. In order to have repeatable results, we used the
oldalloc mount option for ext2 and ext3, which forces a deterministic, but slower, block group
allocation algorithm. When running benchmarks on a local FS, the FS was given a 108 GB raw

14

disk partition. The NFS server exported an 18 GB ext2 partition (mounted with the oldalloc
option).

Unless otherwise noted, a VM was given 2 GB of memory. When running FSVA experiments,
the inter-VM unified buffer cache allowed us to specify a total of 2 GB for both the user VM and
the FSVA; the user-FSVA VM pair do not benefit from any extra caching.

5.2 Portable FSs via FSVAs

The efficacy of the FSVA architecture in addressing the FS portability problem is demonstrated
with two case studies: one inter-OS and one intra-OS.

Linux user using NetBSD LFS. Linux does not include an LFS implementation. There are
stale third-party in-kernel and user-level implementations, but they are not full-featured and have
not been ported to modern kernel versions (!). NetBSD includes an in-kernel LFS implementation.
Using an FSVA, a Linux 2.6.28 user OS can use the unmodified NetBSD LFS implementation (see
Figure 1). We ran a random I/O benchmark in the Linux user OS, using a 200 MB test file and
a 512 byte write unit size. When running over the NetBSD LFS FSVA, the benchmark achieved
19.4 MB/s. In contrast, when running over a Linux ext3 FSVA, the benchmark only achieved
0.44 MB/s. Such improved random write performance is the hallmark of the LFS approach.

Linux 2.6.18 user using Linux 2.6.28 ext4fs. The Linux 2.6.28 kernel (released in De-
cember 2008) includes a new FS: ext4. In contrast to its widely-used ext3 predecessor, ext4 adds
extents, delayed allocation, and journal checksumming. Using FSVAs, a user OS running a Linux
2.6.18 kernel (released in September 2006) can use a Linux 2.6.28 ext4 FSVA. Compared to ext3,
the ext4 FSVA provided over a 4 X improvement in Postmark performance. Thus, FSVAs enable
a Linux OS with a 2 year old kernel to gain the benefits of ext4 immediately, without having to
upgrade.

5.3 Macrobenchmarks

To quantify FSVA overheads, we use three FS-intensive macrobenchmarks: Postmark, IOzone, and
a Linux kernel compilation. To focus on FSVA overheads, both the user OS and the FSVA used
an identical OS: Linux with a 2.6.28 kernel. Otherwise, differences in internal OS policies add
variables to the comparisons. For example, eviction and write-back policies are different in the
2.6.18 and 2.6.28 kernels, and NetBSD performs fewer permission VFS calls than Linux due to its
whole-pathname name cache, in contrast to Linux’s per-pathname-component name cache.

We ran the macrobenchmarks over four FSs: ext2, ext3, NFS, and ReiserFS. Six system con-
figurations were used. “baremetal” denotes a Linux OS running directly on the hardware without
a hypervisor and “domU” denotes a Linux OS running as a paravirtualized Xen guest. In both
cases, the FS executes “natively” in the OS kernel. “FSVA-same-core” denotes an FSVA sharing
the same CPU core as the user VM and using Xen event channels for signaling (§4.4); each IPC
causes two VM context switches. In the next three configurations, the user OS and FSVA are
executed on separate cores and we explore the performance of our three different signaling mech-
anisms. “FSVA-diff-core-events” uses Xen event channels, “FSVA-diff-core-polling” uses polling,
and “FSVA-diff-core-mwait” uses our new mwait-based inter-VM signaling hypercall (§4.4).

Of the six system configurations, we are most interested in the performance difference between
“FSVA-diff-core-mwait” and “domU”. This difference represents the FSVA architecture overhead
when both VMs are concurrently executing on different cores. We envision a VMM scheduler that
gang schedules both VMs during FS-intensive periods. We are also interested in the performance
difference between “baremetal” and “domU”; this is the performance overhead of virtualization. We

15

ext2 ext3 NFS ReiserFS0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
66

0.
7

28
8.

3

50

10
9.

3

59
2.

7

27
4.

3

50
.7

10
0.

3

47
3

21
1

49
.3

95
.3

46
4

21
4.

7

52

93
.356
4

25
8.

7

48
.7 98

54
7

24
9.

3 50 98

Postmark
N

or
m

al
iz

ed
 tr

an
sa

ct
io

ns
 p

er
 s

ec
on

d

Baremetal
domU
FSVA−same−core
FSVA−diff−core−events
FSVA−diff−core−polling
FSVA−diff−core−mwait

Figure 3. Postmark results, normalized to
domU.

ext2 ext3 NFS ReiserFS0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

84
.5

80
.3

59
.3

80
.9

84
.6

79
.4

59
.8

80
.2

84
.1 79 60
.5

79
.8

84
.2

78
.9

60
.1

80

82
.8

79
.1

58
.3

78
.8

84
.2

79
.1

59
.3

79
.4

IOzone

No
rm

al
ize

d
th

ro
ug

hp
ut

 (M
B/

s)

Baremetal
domU
FSVA−same−core
FSVA−diff−core−events
FSVA−diff−core−polling
FSVA−diff−core−mwait

Figure 4. IOzone results, normalized to
domU.

expect processor, VMM, and OS improvements to decrease this overhead over time, as virtualization
continues its increasing adoption.

Each experiment was run three times; means and standard deviations are shown. Before each
experiment, the FS partition was reformatted and caches were flushed.

Postmark. The Postmark benchmark measures performance for small file workloads akin to
e-mail and netnews [18]. It measures the number of transactions per second, where a transaction
is either a file create or file delete, paired with either a read or an append. Files are created with
sizes randomly varying from 500 bytes to 9.77 KB. Appends use access sizes that randomly vary
from 1 byte to the file size. Reads access the entire file. Default parameters were used, except for
benchmark sizing: 50,000 files, 50,000 transactions, and 224 subdirectories.

Figure 3 shows that the use of virtualization and polling- or mwait-based signaling FSVAs
results in less than 10% reduction in Postmark performance, for all tested FSs except ext2. Virtu-
alization introduces a 10% overhead in ext2. FSVAs, using polling or mwait, introduce an additional
7% overhead when compared to a native in-kernel ext2 system. For NFS, all configurations exhibit
less than 4% reduction. For the local FSs, though, the non-polling/mwait FSVAs suffer more over-
head. For ReiserFS, there is a 6.7% slowdown when going from baremetal to virtualization, and
an additional 6.9% overhead for the single-core and events-based IPC FSVA configurations. For
ext2 and ext3, the single-core and events-based IPC configurations induce 21–24% reductions in
throughput compared to the domU system, due to the high frequency of FSVA IPCs for this small
file workload.

IOzone. The IOzone benchmark supports a wide range of sequential/random workloads [8].
We used IOzone to measure sequential I/O performance. A 10 GB file was sequentially written and
read, using 64 KB record sizes. The file was much larger than the VM memory size, so the numbers
reflect out-of-(FSVA)-cache performance.

For each FS, there was less than 2.5% difference among the various configurations. These
results indicate that virtualization and use of FSVAs do not impact streaming I/O throughput,
even when the user VM and FSVA share a single CPU core.

Linux kernel build. This benchmark consists of building the Linux 2.6.28 kernel. The
kernel archive was copied to the FS, unarchived, and compiled. Approximately 1000 source files
were compiled in our kernel configuration file. (This benchmark will be made available upon

16

ext2 ext3 NFS ReiserFS0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
60

3

60
9 17

22

60
2

71
4

71
7

18
85

70
9

10
07

10
24

23
17 89

010
05

10
20

23
24

10
11

74
7

75
7

19
82

75
1

75
7

76
5

19
89

75
7

Linux kernel compilation
N

or
m

al
iz

ed
 ru

nt
im

e
(s

)

Baremetal
domU
FSVA−same−core
FSVA−diff−core−events
FSVA−diff−core−polling
FSVA−diff−core−mwait

Operation Latency (µs)

Null hypercall 0.24
Send event (hypercall+IPI) 2.09
Thread switch 3.52
4 KB memcpy 0.80
Create grant 0.21
Destroy grant 0.36
Map grant 1.99
Unmap grant 2.19

Null IPC (same-core, event) 16.70
Null IPC (diff-core, event) 21.21
Null IPC (diff-core, polling) 4.04
Null IPC (diff-core, mwait) 4.34

Figure 5. Linux kernel build runtime, nor-
malized to domU.

Table 2. Microbenchmarks.

publication.)
Figure 5 shows the results. Virtualization adds substantial overhead (6–18%) to the Linux

kernel compilation, due to the many hypercalls involved with the frequent program execution.
When using FSVAs, the overhead varies significantly based on the configuration. With a separate
CPU core and polling or mwait, the overhead is ≤7%. For the single CPU core and the no-polling
configurations, 20%–40% slowdowns occur. The culprit for these slowdowns is frequent permission
IPCs. For example, for the ext3 case, permission IPCs account for 60% of the 9,508,636 IPCs. For
all FSs tested, the permission VFS handler is very simple: it calls the generic OS access control
handler. Thus, IPC overheads are highlighted.

5.4 Microbenchmarks

To understand the causes of the FSVA overhead, we used high-precision processor cycle counters
to measure a number of events. Table 2 lists the results, the median of ten runs.

The send event operation refers to sending an event notification to another VM. A VM mapping
another VM’s grant performs the map grant hypercall, and then performs an unmap grant hypercall
once it is done with the page. Note that it is more efficient to “share” a single page through two
memory copies (say, over a dedicated staging area) than through the grant mechanism. However,
since Xen allows batched hypercalls, the grant mechanism is faster than memory copies when
sharing more than one page due to the amortized hypercall cost.

A traditional Xen IPC requires two event notifications, each consisting of an IPI and two
thread switches (§4.4). Those four operations correspond to 18µs of the 21.21µs null IPC latency
we observed. The remainder of the IPC latency goes towards locking the shared IPC ring, copying
the request and response data structures onto the ring, and other miscellaneous operations.

When inter-VM signaling is achieved by polling or our new mwait hypercall, the null IPC
latency drops to 4.04µs and 4.34µs, respectively. The extra latency for the mwait-based IPC is
due to the cost of a hypercall. Also, note that when the two VMs are pinned to the same core,
Xen avoids sending an IPI and merely does a VM context switch, leading to a slightly faster IPC
(16.70µs versus 21.21µs). The OS thread switches still occur, since the OS still executes its normal
interrupt-handling routine once the VM is scheduled.

17

5.5 Memory overhead

There is a memory overhead to using FSVAs, with two components: memory for the FSVA OS
image and memory for duplicated metadata. Of course, the particular values for this memory
overhead will vary depending on the particular OS image and the amount of metadata in use. As
concrete examples, we report the memory overhead when running the reported macrobenchmarks.

The Linux 2.6.28 FSVA uses 72 MB of memory for the OS image. Our FSVA proxy sets aside
64 MB of memory for an initial extra reservation. Then, during benchmark execution, we observed
112–136 MB of additional memory allocated for metadata. Thus, the total memory overhead was
248–272 MB. This can be reduced in two ways. First, the Linux kernel can be fine-tuned and extra
functionality can be removed. For benchmarking purposes, we used the same Linux 2.6.28 kernel in
all experiments. But, when running as a Xen paravirtualized guest, the kernel can be substantially
trimmed down. Second, as described in the §4.2, we currently do not put pressure on the size of
the metadata allocated in the FSVA.

5.6 Unified buffer cache

To demonstrate the unified buffer cache, we ran an experiment with an application alternating
between FS and virtual memory activity. The total memory for the user VM and FSVA is 1 GB.
Both VMs are started with 1 GB of memory. Once the user and FSVA kernel modules are loaded,
however, the FSVA returns most of its memory to Xen, thereby limiting the overall memory usage
to slightly over 1 GB.

Figure 6 shows the amount of memory each VM consumes. Starting with a cold cache, the
application reads a 900 MB file through memory mapped I/O. This causes the FSVA’s memory
size to grow to 900 MB, plus its overhead. The application then allocates 800 MB of memory and
touches these pages, triggering Linux’s lazy memory allocation. As the allocation proceeds, the
user VM evicts the clean FS pages to make room for the virtual memory pressure. These eviction
decisions are sent to the FSVA; the FSVA then returns the memory to the user VM. Linux evicts
a a large batch of file pages initially, then trickles the remainder out.

In the third phase, the application performs a 500 MB ordinary read from a file. This requires
FS pages to stage the data being read. Since the application has not freed its previous 800 MB
allocation, and swapping is turned off for this experiment, the virtual memory pages cannot be
evicted. The result is that only the remaining space (just over 200 MB) can be used to stage reads;
the unified buffer cache constrains the FSVA to this size. Page eviction batching is responsible for
the dips in the figure.

5.7 Migration

To evaluate the FSVA’s effect on unavailability during live migration, we wrote a simple benchmark
that continuously performs read operations on a memory-mapped file. This allows us to measure
the slowdown introduced by migrating the user-FSVA VM pair. Every microsecond, the benchmark
reads one byte from a memory-mapped file and sends a UDP packet containing that byte to another
machine. This second machine logs the packet receive times, providing an external observation
point.

To establish baseline live migration performance, we ran our benchmark against the root NFS
filesystem of a single VM with 512 MB of memory. During live migration, the unavailability period
was 0.29 s. We then repeated this test against the same FS exported from an FSVA to a user VM.
The two VMs’ memory allocation was set to 512 MB plus the overhead of the FSVA’s operating
system, which was approximately 92 MB. Unavailability increased to 0.51 s. This increase is caused

18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 100 200 300 400 500

RA
M

 (M
B)

Time (s)

FSVA
User

Total

st
ar

t U
BC

read 900 MB
from file

use 800 MB of
anonymous pages

read 500 MB
from file

Figure 6. Unified buffer cache. This figures shows the amount of memory consumed by the
user and FSVA VMs. As applications shift their memory access pattern between file system
and virtual memory usage, the unified buffer cache dynamically allocates memory among the
two VMs while maintaining a constant total memory allocation.

by the extra OS pages that need to be copied during the suspend phase, as well as the overhead of
our IPC layer and shared memory restoration. We believe this overhead is relatively independent of
the overall memory size, but we were unable to run larger migration experiments due to limitations
in preallocated shadow page tables that Xen uses during migration.

6 Additional related work

File systems and VMs. Several research projects have explored running a FS in another VM, for
a variety of reasons. POFS provides a higher-level file system interface to a VM, instead of a device-
like block interface, in order to gain sharing, security, modularity, and extensibility benefits [26].
VPFS builds a trusted storage facility out of untrusted legacy FSs [40]. XenFS provides a shared
cache between VMs and shares a single copy-on-write FS image among VMs [21]. Our FSVA
architecture adapts these ideas to address the portable FS implementation problem. The differing
goals lead to many design differences. For example, we pass all VFS calls to the FSVA to remain
FS-agnostic, whereas they try to handle many calls in the user OS to improve performance. We
use separate FSVAs for each user VM to maintain virtualization features, such as migration and
resource accounting, whereas POFS and XenFS focus on using a single FS per physical machine to
increase efficiency. We also support migration and a unified buffer cache.

Parallax runs storage VMs in a shared infrastructure to provide a block-level VM storage
interface that includes features such as efficient snapshotting [23]. Ventana [27] is a distributed FS
that provides an FS-level VM storage interface. In contrast, FSVAs provides a FS-level interface
to existing FS implementations that is targeted towards a single user VM.
OS structure. The FSVA architecture is an application of microkernel concepts [1, 16]. Micro-
kernels execute OS components in privileged servers. Doing so allows independent development
and flexibility. But, traditional microkernels require significant changes to OS structure. FSVAs
leverage VMs and existing hypervisor support to avoid the upfront implementation costs that held
back microkernels.

19

LeVasseur et al. reuse existing device drivers in different OSs by running them in a VM [20].
Soft devices simplify device-level development by reusing Xen’s narrow paravirtualized device inter-
face [37]. FSVAs share both approaches’ aim of leveraging existing kernel code and simplifying OS
support. In addition, FSVAs deal with a richer FS interface while retaining OS and virtualization
features.

Nooks increases the reliability of commodity OSs while still using existing drivers through
lightweight kernel protection domains [33]. FSVAs share Nooks’ transparency goal: Nooks reuses
unmodified kernel drivers, while FSVAs reuse unmodified FS implementations. While Nooks’ pri-
mary goal is to provide reliability, FSVAs provide portable FS implementations. This leads us to
design an FSVA interface and maintain OS and VM features across different OSs and VMs.

7 Conclusion

FSVAs offer a solution to FS portability problems. An FS can be developed, debugged, and tuned
for one OS and bundled with it in a preloaded VM (the FSVA). Users can run whatever OS they
like, in a separate VM, and use the FSVA like any other FS. Case studies and other experiments
show that this approach works for a range of unmodified FS implementations across distinct OSs,
with minimal performance overheads and no visible semantic changes for the user OS.

Acknowledgements

We thank David G. Andersen, Orran Krieger, and Jonathan M. McCune for their useful feedback.
We thank Chris Behanna (Panasas), Derrick Brashear (OpenAFS), Nitin Gupta (Panasas), Roger
Haskin (GPFS), Sam Lang (PVFS), Rob Ross (PVFS), and Brent Welch (Panasas) for sharing
their FS development experience. We thank Ben Pfaff (POFS), Mark Williamson (XenFS), and
Xin Zhao (VNFS) for sharing their code.

References

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis Teva-
nian, and Michael Young. Mach: A new kernel foundation for UNIX development. In USENIX
Annual Technical Conference, pages 93–112, Berkeley, CA, 1986. USENIX Association.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In Symposium on
Operating Systems Principles, pages 164–177, New York, NY, 2003. ACM Press.

[3] Brian N. Bershad and C. Brian Pinkerton. Watchdogs: Extending the UNIX File System. In
USENIX Annual Technical Conference, pages 267–275, Berkeley, CA, 1988. USENIX Associ-
ation.

[4] Brent Callaghan and Tom Lyon. The automounter. In USENIX Annual Technical Conference,
pages 43–51, Berkeley, CA, 1989. USENIX Association.

[5] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS: A Parallel
File System for Linux Clusters. In Annual Linux Showcase and Conference, pages 317–327,
Atlanta, GA, 2000. USENIX Association.

20

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Sympo-
sium on Networked Systems Design and Implementation, pages 273–286, Berkeley, CA, 2005.
USENIX Association.

[7] Paul Clements and Linda Northrop. Software product lines: practices and patterns. Addison-
Wesley, Boston, MA, 2001.

[8] Don Capps and William Norcott. IOzone, 2009. http://www.iozone.org.

[9] M. Ebling, L. Mummert, and D. Steere. Overcoming the Network Bottleneck in Mobile Com-
puting. In Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, 1994.
IEEE.

[10] Michael Eisler, Peter Corbett, Michael Kazar, Daniel S. Nydick, and Christopher Wagner.
Data ONTAP GX: a scalable storage cluster. In Conference on File and Storage Technologies,
pages 23–23, Berkeley, CA, 2007. USENIX Association.

[11] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, and Mark
Williamson. Reconstructing I/O. Technical report, University of Cambridge, Computer Lab-
oratory, August 2004.

[12] FUSE. FUSE: filesystem in userspace, 2009. http://fuse.sourceforge.net.

[13] Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Virtual Memory Architec-
ture in SunOS. In USENIX Summer Conference, pages 81–94, Berkeley, CA, 1987. USENIX
Association.

[14] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. Enforcing performance
isolation across virtual machines in Xen. In International Conference on Middleware, pages
342–362, New York, NY, 2006. Springer-Verlag New York, Inc.

[15] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren, George Vargh-
ese, Geoffrey M. Voelker, and Amin Vahdat. Difference Engine: Harnessing Memory Redun-
dancy in Virtual Machines. In Symposium on Operating Systems Design and Implementation,
Berkeley, CA, December 2008. USENIX Association.

[16] Per Brinch Hansen. The Nucleus of a Multiprogramming System. Communications of the
ACM, 13(4):238–241, 1970.

[17] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems, 6(1):51–81, 1988.

[18] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical report, Network
Appliance, October 1997.

[19] S. R. Kleiman. Vnodes: an architecture for multiple file system types in Sun Unix. In USENIX
Annual Technical Conference, pages 238–247, Berkeley, CA, 1986. USENIX Association.

[20] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz. Unmodified device driver
reuse and improved system dependability via virtual machines. In Symposium on Operating
Systems Design and Implementation, pages 17–30, Berkeley, CA, 2004. USENIX Association.

21

[21] Mark Williamson. XenFS, 2009. http://wiki.xensource.com/xenwiki/XenFS.

[22] David Mazieres. A toolkit for user-level file systems. In USENIX Annual Technical Conference,
Berkeley, CA, June 2001. USENIX Association.

[23] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J. Feeley, Nor-
man C. Hutchinson, and Andrew Warfield. Parallax: virtual disks for virtual machines. In
Eurosys, pages 41–54, New York, NY, 2008. ACM Press.

[24] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Documenting and
Automating Collateral Evolutions in Linux Device Drivers. In Eurosys, pages 247–260, New
York, NY, 2008. ACM Press.

[25] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching
and caching. In Symposium on Operating Systems Principles, pages 79–95, New York, NY,
1995. ACM Press.

[26] Ben Pfaff. Improving Virtual Hardware Interfaces. PhD thesis, Stanford, 2007.

[27] Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualization aware file systems: Getting
beyond the limitations of virtual disks. In Symposium on Networked Systems Design and
Implementation, pages 353–366, Berkeley, CA, 2006. USENIX Association.

[28] RedHat. Bug 111656: In 2.4.20.-20.7 memory module, rebalance laundry zone() does not
respect gfp mask GFP NOFS, 2004. https://bugzilla.redhat.com/show_bug.cgi?id=
111656.

[29] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, 10(1):26–52, 1992.

[30] Constantine Sapuntzakis and Monica S. Lam. Virtual appliances in the collective: a road to
hassle-free computing. In HotOS, pages 10–10, Berkeley, CA, 2003. USENIX Association.

[31] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large Comput-
ing Clusters. In Conference on File and Storage Technologies, page 19, Berkeley, CA, 2002.
USENIX Association.

[32] Chuck Silvers. UBC: an efficient unified I/O and memory caching subsystem for NetBSD. In
USENIX Annual Technical Conference, pages 54–54, Berkeley, CA, 2000. USENIX Association.

[33] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of com-
modity operating systems. ACM Transactions on Computer Systems, 23(1):77–110, 2005.

[34] VMWare. Virtual Machine Communication Interface, 2009. http://pubs.vmware.com/
vmci-sdk/index.html.

[35] VMWare. VMware ESX Server Product Overview, 2009. http://www.vmware.com/products/
vi/esx/.

[36] C. Waldspurger. Memory resource management in VMware ESX server. In Symposium on
Operating Systems Design and Implementation, pages 181–194, Berkeley, CA, 2002. USENIX
Association.

22

[37] Andrew Warfield, Steven Hand, Keir Fraser, and Tim Deegan. Facilitating the development
of soft devices. In USENIX Annual Technical Conference, pages 22–22, Berkeley, CA, 2005.
USENIX Association.

[38] Andy Watson, Paul Benn, and Alan G. Yoder. Multiprotocol Data Access: NFS, CIFS, and
HTTP. Technical report, Network Appliance, September 2001.

[39] Neil Webber. Operating system support for portable filesystem extensions. In USENIX Annual
Technical Conference, pages 219–228, Berkeley, CA, 1993. USENIX Association.

[40] Carsten Weinhold and Hermann Härtig. VPFS: building a virtual private file system with a
small trusted computing base. In Eurosys, pages 81–93, New York, NY, 2008. ACM Press.

[41] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim
Zelenka, and Bin Zhou. Scalable performance of the Panasas parallel file system. In Conference
on File and Storage Technologies, pages 1–17, Berkeley, CA, 2008. USENIX Association.

[42] Erez Zadok and Jason Nieh. FiST: A language for stackable file systems. In USENIX Annual
Technical Conference, pages 55–70, Berkeley, CA, 2000. USENIX Association.

23

